0 50 20 03 v 2 1 3 Ju n 20 05 Noncommutative Configuration Space . Classical and Quantum Mechanical Aspects ∗

نویسندگان

  • F. J. Vanhecke
  • C. Sigaud
  • A. R. da Silva
چکیده

In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its quantisation. In coordinates {q i , p k } the canonical symplectic two-form is ω 0 = dq i ∧ dp i. It is well known in symplectic mechanics [5, 6, 9] that the interaction of a charged particle with a magnetic field can be described in a Hamil-tonian formalism without a choice of a potential. This is done by means of a modified symplectic two-form ω = ω 0 − eF, where e is the charge and the (time-independent) magnetic field F is closed: dF = 0. With this symplectic structure, the canonical momentum variables acquire non-vanishing Poisson brackets: {p k , p l } = e F kl (q). Similarly a closed two-form in p-space G may be introduced. Such a dual magnetic field G interacts with the particle's dual charge r. A new modified symplectic two-form ω = ω 0 − eF + rG is then defined. Now, both p-and q-variables will cease to Poisson commute and upon quantisation they become noncommuting operators. In the particular case of a linear phase space R 2N , it makes sense to consider constant F and G fields. It is then possible to define, by a linear transformation , global Darboux coordinates: {ξ i , π k } = δ i k. These can then be quantised in the usual way [ ξ i , π k ] = i¯ h δ i k. The case of a quadratic potential is examined with some detail when N equals 2 and 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

v 1 2 0 Fe b 20 03 Lagrangian Aspects of Quantum Dynamics on a Noncommutative Space ∗

In order to evaluate the Feynman path integral in noncommutative quantum mechanics, we consider properties of a Lagrangian related to a quadratic Hamiltonian with noncommutative spatial coordinates. A quantum-mechanical system with noncommutative coordinates is equivalent to another one with commutative coordinates. We found connection between quadratic classical Lagrangians of these two system...

متن کامل

ar X iv : h ep - t h / 05 01 23 1 v 1 2 8 Ja n 20 05 Noncommutative Quantum Mechanics with Path Integral ∗

We consider classical and quantum mechanics related to an additional noncommutativity, symmetric in position and momentum coordinates. We show that such mechanical system can be transformed to the corresponding one which allows employment of the usual formalism. In particular, we found explicit connections between quadratic Hamiltonians and Lagrangians, in their commutative and noncommutative r...

متن کامل

ar X iv : h ep - t h / 05 06 18 6 v 1 2 2 Ju n 20 05 Matrix Models

Matrix models and their connections to String Theory and noncommutative geometry are discussed. Various types of matrix models are reviewed. Most of interest are IKKT and BFSS models. They are introduced as 0+0 and 1+0 dimensional reduction of Yang–Mills model respectively. They are obtained via the deformations of string/membrane worldsheet/worldvolume. Classical solutions leading to noncommut...

متن کامل

ar X iv : h ep - t h / 05 06 19 7 v 1 2 3 Ju n 20 05 The emergence of noncommutative target space in noncritical string theory Jan

We show how a noncommutative phase space appears in a natural way in noncritical string theory, the noncommutative deformation parameter being the string coupling.

متن کامل

ar X iv : q ua nt - p h / 04 02 03 5 v 3 9 Ju n 20 05 p - MECHANICS AND FIELD THEORY VLADIMIR

The orbit method of Kirillov is used to derive the p-mechanical brackets [25]. They generate the quantum (Moyal) and classical (Poisson) brackets on respective orbits corresponding to representations of the Heisenberg group. The extension of p-mechanics to field theory is made through the De Donder–Weyl Hamiltonian formulation. The principal step is the substitution of the Heisenberg group with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005